Abstract

Cadmium (Cd) is one of the most toxic heavy metals, and its accumulation in plants will seriously affect growth and yield. In this study, Cd-sensitive line D69 and Cd-tolerant line D28 were selected, which the Cd content of D28 was higher than D69 in both above and underground parts after Cd treatment. Using a combination of two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS, the differential expression changes of phosphorylated proteins between D69 and D28 in leaves were classified and analyzed after Cd treatment. A total of 53 differentially expressed phosphoproteins were identified, which mainly involved in metabolism, signal transduction, gene expression regulation, material transport, and membrane fusion. The phosphorylated proteins of Cd-tolerant and Cd-sensitive lines were all analyzed, and found that some proteins associated with carbon metabolism, proteolytic enzymes, F-box containing transcription factors, RNA helicases, DNA replication/transcription/repair enzymes and ankyrins were detected in Cd-tolerant line D28, which might alleviate the abiotic stress caused by Cd treatment. These results will clarify the phosphorylated pathways in response and resistance to Cd stress in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call