Abstract
Sarin is a highly toxic organophosphorus nerve agent that irreversibly inhibits neuronal enzyme acetylcholinesterase. In the prevailing scenario, it is of paramount importance to develop early diagnosis and medical countermeasures for sarin exposure. A deeper understanding of the molecular mechanism of sarin intoxication and perturbations in the associated cellular processes is likely to provide valuable clues for the elucidation of diagnostic markers and therapeutic targets for sarin exposure. Present study, uncovered the changes in phosphorylation patterns of multiple proteins in different rat brain regions after sarin intoxication using 2-DE/MS approach. It provided a holistic view of the phosphorylation-mediated changes in the cellular proteome and highlighted various signaling and response pathways affected at an early time point of sarin intoxication. We found total 22 proteins in the cortex, 25 proteins in the corpus striatum, and 17 proteins in the hippocampus, showed ≥1.5 fold changes (hyper- or hypo- phosphorylated) with respect to control, either at 2.5 h or 1 d after sarin exposure. These results indicated the differential expression of phosphoproteins involved in protein folding in the endoplasmic reticulum, carbon metabolism, metabolic function, and energy metabolism. Four candidates (protein disulfide-isomerase A3, heat shock cognate 71 kDa protein, alpha-enolase, and creatine kinase B-type), hyperphosphorylated in all three brain regions, can be further studied to understand the molecular mechanism behind neurodegenerative changes mediated by sarin exposure. The study sheds light on major pathogenic processes initiated during sarin intoxication and provides putative diagnostic markers/therapeutic targets for further validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.