Abstract

The response patterns during water deficit stress and subsequent recovery of two forage species, Medicago truncatula and Sulla carnosa, were studied. After germination and pre-treatment, seedlings were individually cultivated for two months under two irrigation modes: 100% and 33% of field capacity. Measured parameters were plant growth, water relations, leaf osmotic potential, lipid peroxidation, and leaf inorganic (Na+ and K+) and organic (proline and soluble sugars) solute contents, as well as delta-1-pyrroline-5-carboxylate synthase (P5CS) and proline dehydrogenase (PDH) activities. Our results showed that under control conditions, and in contrast to roots, no significant differences were observed in shoot biomass production between the two species. However, when subjected to water-deficit stress, M. truncatula appeared to be more tolerant than S. carnosa (reduction by 50 and 70%, respectively). In the two studied species, water-deficit stress led to an increase in root/shoot ratio and leaf proline and soluble sugar contents, and a decrease in leaf osmotic potential. Enzymatic assay revealed that in the two species, P5CS activity was stimulated whereas that of PDH was inhibited under stress conditions. Despite greater accumulation of proline, sugar, and potassium in leaves of S. carnosa, M. truncatula was more tolerant to water deficit. This was essentially due to its capacity to control tissue hydration and water-use efficiency, in addition to its greater ability to protect membrane integrity. Following stress relief, M. truncatula and S. carnosa showed partial re-establishment of growth capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.