Abstract

The role of cytoskeletal elements in vesicle transport occurring during exocytosis was examined in adrenal medullary bovine chromaffin cells maintained in culture. Amperometric determination of depolarization-dependent catecholamine release from individual intact cells treated with actin or myosin inhibitors showed alterations in the fast and slow phases of secretion when compared with untreated cells. In contrast, microtubule disassemblers or stabilizers have a moderate effect on secretion, only affecting the release of slow secretory components. In experiments using confocal dynamic microscopy we have observed the drastic effect of actin and myosin inhibitors in abolishing vesicle movement throughout the cytoplasm, and the inhibition of granule mobility in deep perinuclear regions caused by the microtubule stabilizers. Following loss of mobility, vesicles were associated with filaments of F-actin or microtubules. In addition, the mobility of cortical vesicles was affected by actin-myosin inhibitors but not by microtubule inhibitors. The study of cortical cytoskeleton in living cells showed vesicles associated with dense tubular F-actin structures, with microtubules appearing as low density networks. These findings suggest that the distribution and density of both cytoskeletal elements in the cortical region may influence the recruitment of vesicle pools during secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.