Abstract

MHC class II molecules function to present exogenous antigen-derived peptides to CD4 T cells to both drive T cell activation and to provide signals back into the class II antigen presenting cell. Previous work established the presence of multiple GxxxG dimerization motifs within the transmembrane domains of MHC class II α and β chains across a wide range of species and revealed a role for differential GxxxG motif pairing in formation of two discrete mouse class II conformers with distinct functional properties (i.e., M1- and M2-paired I-Ak class II). Biochemical and mutagenesis studies detailed herein extend this model to human class II by identifying an anti-HLA-DR mAb (Tü36) that selectively binds M1-paired HLA-DR molecules. Analysis of the HLA-DR allele reactivity of the Tü36 mAb helped define other HLA-DR residues involved in mAb binding. In silico modeling of both TM domain interactions as well as whole protein structure is consistent with the outcome of biochemical/mutagenesis studies and provides insight into the possible structural differences between the two HLA-DR conformers. Cholesterol depletion studies indicate a role for cholesterol-rich membrane domains in formation/maintenance of Tü36 mAb reactive DR molecules. Finally, phylogenetic analysis of the amino acid sequences of Tü36-reactive HLA-DR β chains reveals a unique pattern of both Tü36 mAb reactivity and key amino acid polymorphisms. In total, these studies bring the paradigm M1/M2-paired MHC class II molecules to the human HLA-DR molecule and suggest that the functional differences between these conformers defined in mouse class II extend to the human immune system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call