Abstract

Our previous work showed that there were marked declines in 125I-α-conotoxin MII labeled nicotinic receptors in monkey basal ganglia after nigrostriatal damage, findings that suggest α3/α6 containing nicotinic receptors sites may be of relevance to Parkinson’s disease. We now investigate whether there are differential changes in the distribution pattern of nicotinic receptor subtypes in the basal ganglia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned animals compared to controls to better understand the changes occurring with nigrostriatal damage. To approach this we used 125I-α-conotoxin MII, a marker for α3/α6 nicotinic receptors, and 125I-epibatidine, a ligand that labels multiple nicotinic subtypes. The results demonstrate that there were medial to lateral gradients in nicotinic receptor distribution in control striatum, as well as ventromedial to dorsolateral gradients in the substantia nigra, which resembled those of the dopamine transporter in these same brain regions. Treatment with MPTP, a neurotoxin that selectively destroys dopaminergic nigrostriatal neurons, led to a relatively uniform decrease in nicotinic receptor sites in the striatum, but a differential effect in the substantia nigra with significantly greater declines in the ventrolateral portion. Competition analysis in the striatum showed that α-conotoxin MII sensitive sites were primarily affected after lesioning, whereas multiple nicotinic receptor populations were decreased in the substantia nigra. From these data we suggest that in the striatum α3/α6 nicotinic receptors are primarily localized on dopaminergic nerve terminals, while multiple nicotinic receptor subtypes are present on dopaminergic cell bodies in the substantia nigra. Thus, if activation of striatal nicotinic receptors is key in the regulation of basal ganglia function, α3/α6-directed nicotinic receptor ligands may be more relevant for Parkinson’s disease therapy. However, nicotinic receptor ligands with a broader specificity may be more important if receptors in the substantia nigra play a dominant role in controlling nigrostriatal activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.