Abstract

Shaping the temporal response of photoreceptors is facilitated by a well-balanced second messenger cascade, in which two neuronal Ca(2+)-sensor proteins operate in a sequential relay mechanism. Although they share structurally similar sensing units, they differentially activate the same target protein. Here, as a prototypical case in Ca(2+)-mediated signal processing, we investigate differential cellular responsiveness in protein conformational dynamics on a nanosecond time scale. For this, we have site-specifically labeled cysteine residues in guanylate cyclase-activating protein GCAP1 by the fluorescent dye Alexa647 and probed its local environment via time-resolved fluorescence spectroscopy. Fluorescence lifetime and rotational anisotropy measurements reveal a distinct structural movement of the polypeptide chain around position 106 upon release of Ca(2+). This is supported by analyzing the diffusional dye motion in a wobbling-in-a-cone model and by molecular dynamics simulations. We conclude that GCAP1 and its cellular cognate GCAP2 operate by distinctly different switching mechanisms despite their high structural homology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call