Abstract
Sex differences in the cellular responses to morphine were examined in an animal model of temporomandibular joint (TMJ) pain. TMJ-responsive neurons were recorded in the superficial laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C 2) junction region, the initial site of synaptic integration for TMJ afferents, in male and cycling female rats under barbiturate anesthesia. Unit activity was evoked by local injection of bradykinin into the TMJ capsule at 30 min intervals and the effects of morphine sulfate (0.03–3 mg/kg, i.v.) were assessed by a cumulative dose regimen. Morphine caused a dose-related inhibition of bradykinin-evoked unit activity in males and diestrous females in a naloxone-reversible manner, while evoked unit activity in proestrous females was not reduced. The apparent sex hormone-related aspect of morphine analgesia was selective for evoked unit activity, since the spontaneous activity of TMJ units was reduced similarly in all groups, while the convergent cutaneous receptive field area of TMJ units did not change in any group. These results were consistent with the hypothesis that sex hormone status interacts with pain control systems to modify neural activity at the level of the Vc/C 2 junction region relevant for TMD pain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.