Abstract

Provisioning reliable wireless services for railway passengers is becoming an increasingly critical problem to be addressed with the fast development of high speed trains (HST). In this paper, exploiting the linear mobility inherent to the HST communication scenario, we discover a new type of spatial-temporal correlation between the base station and moving antenna array on the roof top of the train. Capitalizing on the new spatial-temporal correlation structure and properties, an improved differential space-time modulation (DSTM) scheme is proposed. Analytical expressions are obtained for the pairwise error probability of the system. It is demonstrated that, the proposed approach achieves superior error performance compared with the conventional DSTM scheme. In addition, an adaptive method which dynamically adjusts the transmission block length is proposed to further enhance the system performance. Numerical results are provided to verify the performance of the proposed schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.