Abstract
A new kinetic model that combines Monod kinetics and a constant denitrification rate is proposed to predict bacterial nitrate removal in groundwater. The model, which was developed with an indigenous bacterium Pseudomonas sp. KY1 isolated from a nitrate-contaminated site using molasses as a carbon source, takes into account the dual-mode substrate utilization pattern depending on the degradability of the compounds that constitute molasses. At the early stage of a batch reactor study with various C/N ratios, the nitrate reduction and molasses degradation was likely to be associated with microbial growth, while at the later stage of the total 48 hr of the study, a significant nitrate reduction occurred without substantial cell growth and molasses degradation. The new model was able to simulate the differential substrate utilization pattern, which could not be explained by either Monod kinetics or a constant denitrification rate model. Although further validation using other types of substrates and inoculums should follow, the new model shows the potential to accurately predict the denitrification kinetics in a heterogeneous carbon substrate system with minimum input parameter determination requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.