Abstract

Marine fouling is a commercially important problem affecting abiotic and biotic surfaces. In this study we investigated the surface fouling on a colonial reef-building invertebrate, the bryozoan Pentapora fascialis, from the Welsh coast. We captured 300 scanning electron microscope (SEM) images of 5 colonies of the bryozoan P. fascialis in order to quantify the level of fouling on the exterior surfaces. Evidence for differential fouling was found to occur at several spatial scales, including between older and newer zooids, between proximal and distal regions of the same zooids and between colonies. The current year's growing zooids were found to have a higher level of fouling than older zooids. The difference in the mean level of fouling of proximal regions of zooids compared to distal regions was found to be significant in P. fascialis. In agreement with the differential fouling previously observed by other authors in the laminar bryozoan Flustra foliacea where the proximal region of a zooid was observed to have a higher level of fouling, the fouling coverage in P. fascialis was higher in the proximal region of zooids. A reduction of fouling on some bryozoan surfaces may be caused by production of antimicrobial compounds. Further studies of microbial fouling of a similar quantitative scale in other bryozoans could aid in the identification of novel antimicrobial agents useful for preventing microbial fouling on abiotic surfaces in the marine environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.