Abstract

Methamphetamine-induced behavioral effects are mediated by several neurotransmitters that act via the G-protein coupled receptors (GPCRs). The functioning of GPCRs are negatively regulated by regulators of G-protein signaling (RGS) proteins. The goal of this study was to assess the role of two specific RGS proteins namely the RGS2 and the RGS4 proteins in methamphetamine-induced behaviors. The effects of methamphetamine (1 mg/kg; i.p.) on conditioned place preference (CPP) and locomotor activity were assessed in genetically modified male and female mice lacking either RGS2 or RGS4 and their wildtype littermates to achieve the above goal. Locomotor activity after methamphetamine administration was assessed in both methamphetamine-naïve and -experienced mice. Methamphetamine-induced CPP at the tested dose was blocked in male, but not female, mice lacking RGS4 compared to respective controls. Interestingly, methamphetamine-induced increase in locomotor activity at the tested dose was observed in methamphetamine-experienced, but not in the methamphetamine-naïve, male mice lacking RGS4. However, methamphetamine-induced increase in locomotor activity at the tested dose was blocked in both methamphetamine-naïve and -experienced female mice lacking RGS4. Interestingly, methamphetamine-induced rewarding effects and methamphetamine-induced increase in locomotor activity at the tested dose were observed in mice lacking RGS2, irrespective of sex and/or history of methamphetamine exposure. Together, the data suggest that RGS4 plays a role in methamphetamine-induced behaviors and could serve as a potential target for medications intended to treat the acute effects of methamphetamine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call