Abstract

We assessed whether fish that tolerate higher levels of Cu exposure have a higher capacity to induce metallothionein (MT) synthesis than other, more sensitive, fish species. Furthermore, we examined if a correlation could be found between tissue Cu accumulation and MT levels. Cu accumulation and MT concentrations in gill, liver, kidney and muscle of rainbow trout ( Oncorhynchus mykiss), common carp ( Cyprinus carpio) and gibel carp ( Carassius auratus gibelio) were measured during a 1 week exposure to a sublethal Cu (1 μM). Different patterns were observed for the three species regarding Cu accumulation as well as MT induction. Virtually no Cu accumulation was seen in rainbow trout gill, while in both cyprinid species gill Cu levels increased three- to four-fold. Cu accumulated fast in common carp (within the first day), but slow in gibel carp (1 week). Gill MT induction was obvious in gibel carp only, with an increase of 156% after 1 week of exposure. Liver accumulated most Cu in rainbow trout (235% increase) and common carp (144% increase), with Cu levels in liver being significantly higher in rainbow trout compared to the carp species from the start. MT induction was pronounced in common carp liver only (138% increase). In gibel carp liver, there was no clear Cu accumulation or MT induction. In contrast, gibel carp was the only species to show Cu accumulation in kidney after 3 days of exposure (83% increase), after which levels returned to normal. Concomitantly, gibel carp kidney was also the only kidney tissue to show MT induction (192–195% increase after 3 and 7 days). In common carp, a significant decrease of kidney MT levels was observed from day 1 onwards. In muscle, Cu accumulation was clear for the two cyprinid species (three- to four-fold increase) but not for rainbow trout. Of the species studied, gibel carp is the most resistant to copper polluted environments, and showed a positive significant relationship between tissue copper concentrations and MT levels in gill, liver and muscle tissues. Common carp showed an intermediate response, with significant correlations in liver and muscle tissue. In contrast, we found low MT induction in rainbow trout, the most sensitive species, and no correlation at all between MT concentrations and tissue copper contents. Possibly, the regulatory capacity for copper homeostasis was exceeded in rainbow trout, and MT synthesis inhibited.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call