Abstract

Almost all terrestrial plants produce green leaf volatiles (GLVs), consisting of six-carbon (C6) aldehydes, alcohols and their esters, after mechanical wounding. C6 aldehydes deter enemies, but C6 alcohols and esters are rather inert. In this study, we address why the ability to produce various GLVs in wounded plant tissues has been conserved in the plant kingdom. The major product in completely disrupted Arabidopsis leaf tissues was (Z)-3-hexenal, while (Z)-3-hexenol and (Z)-3-hexenyl acetate were the main products formed in the intact parts of partially wounded leaves. 13C-labeled C6 aldehydes placed on the disrupted part of a wounded leaf diffused into neighboring intact tissues and were reduced to C6 alcohols. The reduction of the aldehydes to alcohols was catalyzed by an NADPH-dependent reductase. When NADPH was supplemented to disrupted tissues, C6 aldehydes were reduced to C6 alcohols, indicating that C6 aldehydes accumulated because of insufficient NADPH. When the leaves were exposed to higher doses of C6 aldehydes, however, a substantial fraction of C6 aldehydes persisted in the leaves and damaged them, indicating potential toxicity of C6 aldehydes to the leaf cells. Thus, the production of C6 aldehydes and their differential metabolisms in wounded leaves has dual benefits. In disrupted tissues, C6 aldehydes and their α,β-unsaturated aldehyde derivatives accumulate to deter invaders. In intact cells, the aldehydes are reduced to minimize self-toxicity and allow healthy cells to survive. The metabolism of GLVs is thus efficiently designed to meet ecophysiological requirements of the microenvironments within a wounded leaf.

Highlights

  • Green leaf volatiles (GLVs), which consist of six-carbon (C6) aldehydes, alcohols, and their esters, are ubiquitous in the leaves of most plants [1]

  • The amounts of other aldehydes such as (E)-2-hexenal, OHE/HPHE, and HHE were low and were nearly the same as those found in intact leaves. These results indicated that isomerization and oxidation of (Z)-3-hexenal did not occur to any significant extent, even though (Z)-3-hexenal should have been formed in the disrupted tissues as a primary product of the GLV pathway, as was observed in completely disrupted leaf tissues

  • The amount of n-hexanol was slightly increased by the addition of NADPH, but the amounts of C5 alcohols such as 1-penten-3-ol and (E)-2-pentenol were barely changed. These results suggest that the reducing enzyme activated by the addition of NADPH was specific to C6 aldehydes

Read more

Summary

Introduction

Green leaf volatiles (GLVs), which consist of six-carbon (C6) aldehydes, alcohols, and their esters, are ubiquitous in the leaves of most plants [1]. The biosynthetic pathways that produce GLVs (Fig. 1) are widespread in the plant kingdom. The hydroperoxide is cleaved by hydroperoxide lyase (HPL) at the C12–C13 bond to produce two carbonyl compounds. One of the primary products of HPL, (Z)-3-hexenal, can be reduced to form (Z)-3-hexenol. A portion of (Z)-3-hexenol is further converted to (Z)-3-hexenyl acetate by acetyl-CoA:(Z)-3hexenol acetyltransferase [2]. In some plants, (Z)-3-hexenal is converted to (E)-2-hexenal spontaneously or enzymatically [1,3,4]. A portion of (E)-2-hexenal, which has electrophilic properties because of its a,b-unsaturated carbonyl moiety, reacts with glutathione to form a glutathione-conjugate [5]. Biosynthetic reactions that rely on reducing equivalents and acetyl-CoA are rather costly; when plants convert (Z)-3-hexenal to (Z)-3-

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call