Abstract

Organic nitrate vasodilators (ORN) exert their pharmacologic effects through the metabolic release of nitric oxide (NO). Mitochondrial aldehyde dehydrogenase (ALDH2) is the principal enzyme responsible for NO liberation from nitroglycerin (NTG), but lacks activity towards other ORN. Cytosolic aldehyde dehydrogenase (ALDH1a1) can produce NO from NTG, but its activity towards other ORN is unknown. Using purified enzymes, we showed that both isoforms could liberate NO from NTG, isosorbide dinitrate (ISDN), and nicrorandil, while only ALDH1a1 metabolized isosorbide-2-mononitrate and isosorbide-5-mononitrate (IS-5-MN). Following a 10-min incubation with purified enzyme, 0.1 mM NTG and 1 mM ISDN potently inactivated ALDH1a1 (to 21.9% ± 11.1% and 0.44% ± 1.04% of control activity, respectively) and ALDH2 (no activity remaining and 4.57% ± 7.92% of control activity, respectively), while 1 mM IS-5-MN exerted only modest inactivation of ALDH1a1 (reduced to 89% ± 4.3% of control). Cytosolic ALDH in hepatic homogenates incubated at the vascular EC(50) concentrations of ORN was inactivated by NTG (to 45.1% ± 8.1% of control activity) while mitochondrial ALDH was inactivated by NTG and nicorandil (to 68.2% ± 10.0% and 78.7% ± 19.8% of control, respectively). Via site-directed mutagenesis, the active sites of ORN metabolism of ALDH2 (Cys-319) and ALDH1a1 (Cys-303) were found to be identical to those responsible for their dehydrogenase activity. Cysteine-302 of ALDH1a1 and glutamate-504 of ALDH2 were found to modulate the rate of ORN metabolism. These studies provide further characterization of the substrate selectivity, inactivation, and active sites of ALDH2 and ALDH1a1 toward ORN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.