Abstract
Agents targeting insulin-like growth factor-I receptor (IGF-IR), including antibodies and small-molecule inhibitors, are currently in clinical development for the treatment of cancers including sarcoma. However, development of resistance is a common phenomenon resulting in failures of anticancer therapies. In light of this problem, we developed two resistant models from the rhabdomyosarcoma cell line Rh41: Rh41-807R, with acquired resistance to BMS-754807, a small-molecule dual-kinase inhibitor targeting IGF-IR and insulin receptor (IR), and Rh41-MAB391R, with resistance to MAB391, an IGF-IR-blocking antibody. In addition, tumor xenograft models were established from Rh41 and Rh41-807R cell lines. Gene expression and DNA copy number analyses of these models revealed shared as well as unique acquired resistance mechanisms for the two types of IGF-IR inhibitors. Each resistant model used different signaling pathways as a mechanism for proliferation. Platelet-derived growth factor receptor α (PDGFRα) was amplified, overexpressed, and constitutively activated in Rh41-807R cells and tumors. Knockdown of PDGFRα by small interfering RNA in Rh41-807R resensitized the cells to BMS-754807. Synergistic activities were observed when BMS-754807 was combined with PDGFRα inhibitors in the Rh41-807R model in vitro. In contrast, AXL expression was highly elevated in Rh41-MAB391R but downregulated in Rh41-807R. Notably, BMS-754807 was active in Rh41-MAB391R cells and able to overcome resistance to MAB391, but MAB391 was not active in Rh41-807R cells, suggesting potentially broader clinical activity of BMS-754807. This is the first study to define and compare acquired resistance mechanisms for IGF-IR-targeted therapies. It provides insights into the differential acquired resistance mechanisms for IGF-IR/IR small-molecule inhibitor versus anti-IGF-IR antibody.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.