Abstract

In this work, a spiking neural network (SNN) is proposed for approximating differential sensorimotor maps of robotic systems. The computed model is used as a local Jacobian-like projection that relates changes in sensor space to changes in motor space. The SNN consists of an input (sensory) layer and an output (motor) layer connected through plastic synapses, with inter-inhibitory connections at the output layer. Spiking neurons are modeled as Izhikevich neurons with a synaptic learning rule based on spike timing-dependent plasticity. Feedback data from proprioceptive and exteroceptive sensors are encoded and fed into the input layer through a motor babbling process. A guideline for tuning the network parameters is proposed and applied along with the particle swarm optimization technique. Our proposed control architecture takes advantage of biologically plausible tools of an SNN to achieve the target reaching task while minimizing deviations from the desired path, and consequently minimizing the execution time. Thanks to the chosen architecture and optimization of the parameters, the number of neurons and the amount of data required for training are considerably low. The SNN is capable of handling noisy sensor readings to guide the robot movements in real-time. Experimental results are presented to validate the control methodology with a vision-guided robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.