Abstract

Neurotransmitter release is regulated by voltage-dependent calcium channels (VDCCs) at synapses throughout the nervous system. At the neuromuscular junction (NMJ) electrophysiological and pharmacological studies have identified a major role for P- and/or Q-type VDCCs in controlling acetylcholine release from the nerve terminal. Additional studies have suggested that N-type channels may be involved in neuromuscular transmission. VDCCs consist of pore-forming alpha1 and regulatory beta subunits. In this report, using fluorescence immunocytochemistry, we provide evidence that immunoreactivity to alpha1A, alpha1B, and alpha1E subunits is present at both rat and human adult NMJs. Using control and denervated rat preparations, we have been able to establish that the subunit thought to correspond to P/Q-type channels, alpha1A, is localized presynaptically in discrete puncta that may represent motor nerve terminals. We also demonstrate for the first time that alpha1A and alpha1B (which corresponds to N-type channels) may be localized in axon-associated Schwann cells and, further, that the alpha1B subunit may be present in perisynaptic Schwann cells. In addition, the alpha1E subunit (which may correspond to R/T-type channels) seems to be localized postsynaptically in the muscle fiber membrane and concentrated at the NMJ. The possibility that all three VDCCs at the NMJ are potential targets for circulating autoantibodies in amyotrophic lateral sclerosis is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.