Abstract

In mice, two T-box transcription factors, T-box expressed in T cells (T-bet) and eomesodermin (Eomes), drive the differentiation of CD8 T cell lineages; however, little is known regarding their role in human CD8 T cell differentiation. In this study, we characterized T-bet and Eomes expression and localization within human CD8 memory T cell populations. We find that T-bet and Eomes are broadly expressed in human memory CD8 T cells, with increasing levels of T-bet and Eomes strongly correlating with differentiation from central memory to effector memory and effector subpopulations. In resting T cells, T-bet levels directly correlate to subcellular localization, with a higher propensity for nuclear expression of T-bet within T-bet(hi) cells and predominantly cytoplasmic expression in T-bet(lo) cells. In addition, Eomes is also localized to either the nucleus or the cytoplasm. Upon TCR stimulation, the percentage of T cells that express T-bet dramatically increases, whereas the percentage of cells expressing Eomes remains largely unchanged across all memory populations. Of interest, T-bet, but not Eomes, relocalizes to the nucleus in the majority of cells across all populations within 24 h post stimulation. These data indicate that T-bet and Eomes are likely regulated at the level of subcellular localization, potentially via different mechanisms. Together, these findings suggest a novel model for CD8 T cell differentiation in humans that is based on the localization of T-bet and Eomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.