Abstract

An important step in megakaryocyte maturation is the appropriate assembly of at least two distinct subsets of α-granules. The mechanism that sorts the α-granule components into distinct structures and mediates their release in response to specific stimuli is now emerging. P-selectin and von Willebrand factor are two proteins present in the α-granules that recognize P-selectin glycoprotein ligand on neutrophils and collagen in the subendothelial matrix. These proteins may play an important role in determining the differential release of the α-granule contents in response to external stimuli. If P-selectin and von Willebrand factor are localized in the same or different α-granules is not known. To clarify this question, we analyzed by immunoelectron microscopy the localization of von Willebrand factor and P-selectin during the maturation of wild-type and Gata1low megakaryocytes induced in vivo by treating animals with thrombopoietin. Gata1low is a hypomorphic mutation that blocks megakaryocyte maturation, reduces the levels of von Willebrand factor expression and displaces P-selectin on the demarcation membrane system. The maturation block induced by this mutation is partially rescued by treatment in vivo with thrombopoietin. In immature megakaryocytes, both wild-type and Gata1low, the two receptors were co-localized in the same cytoplasmic structures. By contrast, the two proteins were segregated to separate α-granule subsets as the megakaryocytes matured. These observations support the hypothesis that P-selectin and von Willebrand factor may ensure differential release of the α-granule content in response to external stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call