Abstract
RAP1 proteins belong to the RAS family of small GTPases that operate as molecular switches by cycling between GDP-bound inactive and GTP-bound active states. The C-terminal anchors of RAP1 proteins are known to direct membrane localization, but how these anchors organize RAP1 on the plasma membrane (PM) has not been investigated. Using high-resolution imaging, we show that RAP1A and RAP1B form spatially segregated nanoclusters on the inner leaflet of the PM, with further lateral segregation between GDP-bound and GTP-bound proteins. The C-terminal polybasic anchors of RAP1A and RAP1B differ in their amino acid sequences and exhibit different lipid binding specificities, which can be modified by single-point mutations in the respective polybasic domains (PBD). Molecular dynamics simulations reveal that single PBD mutations substantially reduce the interactions of the membrane anchors with the PM lipid phosphatidylserine. In summary, we show that aggregate lipid binding specificity encoded within the C-terminal anchor determines PM association and nanoclustering of RAP1A and RAP1B. Taken together with previous observations on RAC1 and KRAS, the study reveals that the PBD sequences of small GTPase membrane anchors can encode distinct lipid binding specificities that govern PM interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.