Abstract

The double-headed myosin V molecular motor carries intracellular cargo processively along actin tracks in a hand-over-hand manner. To test this hypothesis at the molecular level, we observed single myosin V molecules that were differentially labeled with quantum dots having different emission spectra so that the position of each head could be identified with ∼6-nm resolution in a total internal reflectance microscope. With this approach, the individual heads of a single myosin V molecule were observed taking 72-nm steps as they alternated positions on the actin filament during processive movement. In addition, the heads were separated by 36 nm during pauses in motion, suggesting attachment to actin along its helical repeat. The 36-nm interhead spacing, the 72-nm step size, and the observation that heads alternate between leading and trailing positions on actin are obvious predictions of the hand-over-hand model, thus confirming myosin V’s mode of walking along an actin filament.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.