Abstract

This article introduces the concept of Assur virtual chains and its applications in differential kinematics of parallel manipulators. Using Assur virtual chains, the differential kinematics has a simple matricial formulation and the choice between direct and inverse kinematics is reduced to select primary variables in a homogeneous linear system. Assur virtual chains are also useful for obtaining information about the relative movements or to imposing particular kinematic constraints between two links of a kinematic chain. Additionally, a new systematic algorithm is established to analytically eliminate passive joint velocities and calculate the Jacobian matrices. This elimination approach is based on screw theory concepts such as twist, wrench, and reciprocity; also, graph theory is used for kinematic chain representation. At the end of the article, the method is applied to a 3RRR planar parallel manipulator and a general universal-prismatic-spheric Stewart—Gough platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call