Abstract

The activity of endogenous nuclear protein kinases has been probed in an in vitro assay system of isolated nuclei from Chironomus salivary gland cells. The phosphorylation of a set of seven prominent rapidly phosphorylated non-histone proteins and of histones H3, H2A and H4 was analyzed using ATP or GTP as phosphoryl donor and heparin as protein kinase effector. The core histones H2A and H3 both incorporate 32P from [γ- 32P]ATP as well as from [γ- 32P]GTP but their phosphorylation is differentially affected by heparin. The phosphorylation of H2A is blocked by heparin while that of H3 is even stimulated in the presence of heparin when ATP is used as phosphate donor. H4 is unable to incorporate phosphate groups from GTP but its ATP-based phosphorylation is heparin sensitive. Of the non-histone protein kinase substrates, we could only detect two, the 44-kDa and 115-kDa proteins, which are heparin sensitive with either ATP or GTP and, thus, strictly meet the criteria for casein kinase type II-specific phosphorylation. The investigated histones and non-histone proteins can be grouped into three broad categories on the basis of their phosphorylation properties. (A) Proteins very likely affected by casein kinase NII. (B) Proteins phosphorylated by strictly ATP-specific protein kinases. (C) Proteins phosphorylated by ATP as well as GTP utilizing protein kinase(s) other than casein NII. Category B proteins can be subdivided into proteins phosphorylated in a heparin-resistant (B1) and heparin-sensitive (B2) manner. The phosphorylation of category C proteins may be heparin sensitive with ATP only (C1), heparin sensitive with GTP only (C2), heparin insensitive with both ATP and GTP (C3) or stimulated by heparin (C4).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.