Abstract

The propagation of light through complex structures, such as biological tissue, is a poorly understood phenomenon. Typically the tissue is modeled as an effective medium, and Monte Carlo techniques are used to solve the radiative transport equation. In such an approach the medium is characterized in terms of a limited number of physical scatter and absorption parameters, but is otherwise considered homogeneous. For exploration of propagation phenomena such as spatial coherence, however, a physical model of the tissue medium that allows multiscale structure is required. We present a particularly simple means of establishing such a multiscale tissue characterization based on measurements using a differential interference contrast (DIC) microscope. This characterization is in terms of spatially resolved maps of the (polar and azimuthal) angular ray deviations. With such data, tissues can be characterized in terms of their first and second order scatter properties. We discuss a simple means of calibrating a DIC microscope, the measurement procedure and quantitative interpretation of the ensuing data. These characterizations are in terms of the scatter phase function and the spatial power spectral density

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.