Abstract
Tick-borne rickettsioses, caused by Gram-negative bacteria of the Rickettsia genus, pose a growing global threat, with various arthropod vectors contributing to their transmission. Understanding the complex interactions within tick microbiota, including the role of Rickettsia species, is crucial for elucidating the dynamics of rickettsial diseases. Here, we investigate the taxonomic profiles and co-occurrence networks of Rickettsia in Rh. sanguineus sensus lato (s.l.) and Rh. turanicus ticks, revealing significant differences in community composition and local connectivity of Rickettsia species. While the microbiota of both tick species share common taxa, distinct differences in relative abundance and network topology suggest unique ecological niches. Moreover, robustness analysis demonstrates varying resilience to perturbations, indicating different strategies for network organization. Our findings also highlight metabolic differences between tick species, suggesting potential implications for Rickettsia interactions. Overall, this study provides insights into the intricate microbial landscape within ticks, shedding light on the functional redundancy and metabolic pathways associated with Rickettsia, thus advancing our understanding of tick-borne diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.