Abstract
The twin-arginine translocase (Tat) system is used by many bacteria to move proteins across the cytoplasmic membrane. Tat substrates are prefolded and contain a conserved SRRxFLK twin-arginine (RR) motif at their N termini. Many Tat substrates in Escherichia coli are cofactor-containing redox enzymes that have specific chaperones called redox enzyme maturation proteins (REMPs). Here we characterized the interactions between 10 REMPs and 15 RR peptides of known and predicted Tat-specific redox enzyme subunits. A combination of in vitro and in vivo experiments demonstrated that some REMPs were specific to a redox enzyme(s) of similar function, whereas others were less specific and bound peptides of unrelated enzymes. Results from Biacore surface plasmon resonance (SPR) and bacterial two-hybrid experiments identified interactions in addition to those found in far-Western experiments, suggesting that conformational freedom and/or other cellular factors may be required. Furthermore, we show that the interaction of the two prevents both from being proteolytically degraded in vivo, and kinetic data from SPR show up to 10-fold-tighter binding to the expected RR substrate when multiple binding partners existed. Investigations using full-length sequences of the RR proteins showed that the mature portion for some redox enzyme subunits is required for detection of the interactions. Sequence alignments among the REMPs and RR peptides indicated that homology between the REMPs and the hydrophobic regions following the RR motifs in the peptides correlates to cross-recognition.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.