Abstract

Regulators of G protein signaling (RGS) proteins bind to active G alpha subunits and accelerate the rate of GTP hydrolysis and/or block interaction with effector molecules, thereby decreasing signal duration and strength. RGS proteins are defined by the presence of a conserved 120-residue region termed the RGS domain. Recently, it was shown that the G protein-coupled receptor kinase 2 (GRK2) contains an RGS domain that binds to the active form of G alpha(q). Here, the ability of GRK2 to interact with other members of the G alpha(q) family, G alpha(11), G alpha(14), and G alpha(16), was tested. The signaling of all members of the G alpha(q) family, with the exception of G alpha(16), was inhibited by GRK2. Immunoprecipitation of full-length GRK2 or pull down of GST-GRK2-(45-178) resulted in the detection of G alpha(q), but not G alpha(16), in an activation-dependent manner. Moreover, activated G alpha(16) failed to promote plasma membrane (PM) recruitment of a GRK2-(45-178)-GFP fusion protein. Assays with chimeric G alpha(q)(-)(16) subunits indicated that the C-terminus of G alpha(q) mediates binding to GRK2. Despite showing no interaction with GRK2, G alpha(16) does interact with RGS2, in both inositol phosphate and PM recruitment assays. Thus, GRK2 is the first identified RGS protein that discriminates between members of the G alpha(q) family, while another RGS protein, RGS2, binds to both G alpha(q) and G alpha(16).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.