Abstract

Staphylococcus epidermidis is a commensal on skin, whereas Staphylococcus aureus is a transient pathogen. The aim was to determine whether the skin's innate defence systems responded differently to these microorganisms. Differential gene expression of a human skin equivalent (SE) model was assessed by microarray technology, in response to colonization by S. epidermidis or S. aureus. Only a small number of transcripts were significantly (P<0.0001) increased (12) or decreased (35) with gene expression changes of >2-fold on SEs colonized with S. epidermidis compared with controls (no colonization). Expression of one innate defence gene, pentraxin 3 (PTX3), was upregulated, while psoriasin, S100A12, S100A15, beta defensin 4, beta defensin 3, lipocalin 2 and peptidoglycan recognition protein 2 were downregulated. In contrast, large numbers of transcripts were significantly increased (480) or decreased (397) with gene expression changes of >2-fold on SEs colonized with S. aureus compared with controls. There was upregulation in gene expression of many skin defence factors including Toll-like receptor 2, beta defensin 4, properdin, PTX3, proinflammatory cytokines tumour necrosis factor-alpha, IL-1 alpha, IL-1 beta, IL-17C, IL-20, IL-23A and chemokines IL-8, CCL4, CCL5, CCL20 and CCL27. These differences may partly explain why S. epidermidis is a normal skin resident and S. aureus is not.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call