Abstract
Potential targets for chemoprevention of nonmelanoma skin cancer include UV-induced nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1) activation in keratinocytes. Inhibition of both these ultraviolet light B (UVB)-induced transcription factors has been shown with the dominant-negative c-jun mutant, TAM67; however, its mechanism of action has not yet been determined. Here we demonstrated that transient transfection of a mouse keratinocyte cell line (308) with a dominant-negative phosphorylation mutant of c-Jun before exposure to 250 J/m(2) UVB inhibits transactivation mediated by both AP-1 and NF-kappaB transcription factors to levels below those of UVB exposed controls. Through the utilization of immunoprecipitation techniques, protein-protein interactions between NF-kappaB family members IkappaBalpha, IkappaBbeta, p50, and p65 (Rel-A) were identified with an Xpress tagged dominant-negative c-Jun (TAM67) protein. Expression of the leucine zipper domain of the TAM67 protein inhibited UVB-induced NF-kappaB transactivation but not AP-1 transactivation. Expression of the bZIP domain of the TAM67 protein was able to inhibit transactivation mediated by both transcription factors. These data demonstrate that TAM67 is able to inhibit two significant UVB-induced molecular targets AP-1 and NF-kappaB, and that the inhibition of these two transcription factor families is potentially due to protein-protein interactions between different regions of the dominant-negative c-Jun protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.