Abstract

Cold temperature is encoded by the cold-sensitive ion channel TRPM8 in somatosensory neurons. It has been unclear how TRPM8 is modulated so that it can mediate distinct type of cold signaling. We have recently reported that activated Gαq directly inhibits TRPM8 after activation of Gq-coupled receptors. Here, we further show that activation of the muscarinic receptor M1R, which is known to inhibit M currents through PLCβ-mediated hydrolysis of PtdIns(4,5)P2, similarly inhibited TRPM8 potently, but inhibition was not prevented by the PLC inhibitor U73122. Interestingly, although Gαq and Gα11 are indistinguishable in activating PLCβ and hydrolysing PtdIns(4,5)P2, activated Gα11 inhibited TRPM8 to a lesser extent than activated Gαq. The differential TRPM8 inhibition is determined by a specific residue E197 on Gα11, because mutating this residue to the corresponding residue on Gαq restored TRPM8 inhibition to a similar degree as mediated by Gαq. These results reinforce the idea that activated Gαq directly inhibits TRPM8 independently from PtdIns(4,5)P2 hydrolysis-mediated inhibition of TRPM8.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.