Abstract

Aquatic plants mediate ecological processes in aquatic habitats, specifically predator–prey (bluegill sunfish (Lepomis macrochirus Rafinesque)-macroinvertebrate) interactions. Macroinvertebrate colonization is directly and indirectly influenced by substrate heterogeneity, interstitial space, and surface complexity. Exotic invasive plant species, such as Hydrilla verticillata L.F. Royle, may alter the available structure in aquatic habitat by creating a shift to a homogeneous habitat, thus affecting the macroinvertebrate community. Since macroinvertebrates provide a food base for young phytophilic fishes, changes in their density and abundance may alter food webs. We investigated the hypothesis that macroinvertebrate community structure is influenced by differences in habitat heterogeneity by measuring difference between a heterogeneous native aquatic plant bed, homogenous hydrilla plant bed, and habitat with no plants. Studies were conducted in the field (pond) and the experimental treatments were: (1) no plants, (2) monotypic bed of hydrilla, and (3) diverse native plants. Aquatic plants, regardless of species, supported greater macroinvertebrate abundance, richness, and biomass. Macroinvertebrate abundance, richness, and biomass in a hydrilla-dominated habitat did not differ significantly from a diverse plant habitat, except for richness in October. Indicator taxa did differ significantly between respective treatments, suggesting a change in species composition. However, no significant effect of fish predation on macroinvertebrate populations and/or community structure was documented. The data suggest that a shift from a natural mosaic of vegetated habitat to a highly complex monotypic habitat (e.g., exotic hydrilla) may reduce spatial heterogeneity important to structuring a macroinvertebrate assemblage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.