Abstract
The oscillatory theory of fourth order differential equations has not yet been developed well enough. The results are known only for the case when the coefficients of differential equations are power functions. This fact can be explained by the absence of simple effective methods for studying such higher order equations. In this paper, the authors investigate the oscillatory properties of a class of fourth order differential equations by the variational method. The presented variational method allows to consider any arbitrary functions as coefficients, and our main results depend on their boundary behavior in neighborhoods of zero and infinity. Moreover, this variational method is based on the validity of a certain weighted differential inequality of Hardy type, which is of independent interest. The authors of the article also find two-sided estimates of the least constant for this inequality, which are especially important for their applications to the main results on the oscillatory properties of these differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.