Abstract

This study sought to reveal mechanisms for differential regulation of reactive oxygen species (ROS) in histone deacetylase inhibitor FK228-induced selective apoptosis of oncogenic H-Ras-expressing human cancer cells. Human urinary bladder cancer J82 and oncogenic H-Ras-expressing J82 cells were used to reveal FK228-induced differential Erk1/2 activation, Nox-1 elevation, ROS production, glutathione (GSH) depletion, caspase activation, and apoptosis. Specific inhibitors were used to suppress Nox-1 activity and ROS production. Mek1/2 inhibitor was used to suppress Erk1/2 activation. Validated-specific siRNAs were used to knock down Nox-1. ROS levels, GSH levels, and caspase-3/7 activities were measured by GSH assay, flow cytometry and luminescence assays, respectively. Western blot analysis determined levels of Erk1/2 and Nox-1. Erk1/2, Nox-1, ROS, caspase-3/7, and cell death were differentially induced, whereas GSH was differentially depleted by FK228 in oncogenic H-Ras-expressing J82 versus parental cells. Blockage of the ERK pathway resulted in suppressing oncogenic H-Ras- and FK228-induced Nox-1 elevation, ROS production, caspase activation, and cell death. Knockdown of Nox-1 by specific siRNAs reduced FK228-induced ROS production, caspase activation, and cell death. Oncogenic H-Ras expression and FK228 treatment synergistically induced the ERK pathway, resulting in differentially increased Nox-1 elevation, ROS production, and GSH depletion, leading to differential caspase activation and cell death in oncogenic H-Ras-expressing J82 versus parental cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call