Abstract

Male Wistar rats were treated with hexachlorobenzene, benzyl isothiocyanate, phenobarbital or 3-methylcholanthrene. Hepatic cytosolic glutathione S-transferase (GST) activity was determined with the substrates 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, ethacrynic acid and trans-4-phenyl-3-buten-2-one. Cytosolic glutathione peroxidase activity was measured with cumene hydroperoxide. GST activity toward 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene and ethacrynic acid was enhanced by all compounds, hexachlorobenzene and 3-methylcholanthrene causing the largest and the smallest increase respectively. Trans-4-phenyl-3-buten-2-one-conjugating activity exhibited only small changes, while peroxidase activity with cumeme hydroperoxide was not changed by any of the inducing agents. GST isoenzymes were purified on S-hexylglutathione Sepharose 6B and separated by means of FPLC-chromatofocusing, to evaluate effects on the GST isoenzyme pattern. Hexachlorobenzene and phenobarbital both caused an increase in the relative amounts of subunits 1 and 3 when compared with subunits 2 and 4 respectively. For 3-methylcholanthrene only induction of subunit 1 was observed, possibly due to the relatively low induction levels of total GST activity. In benzyl isothiocyanate-treated animals, an induction of subunit 3 was found as well as an increase in the relative amount of subunit 2. Thus, benzyl isothiocyanate behaves differently from hexa-chlorobenzene, phenobarbital and 3-methylcholanthrene as an inducing agent of rat hepatic glutathione S-transferases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call