Abstract

Soybean cell cultures were challenged either by glucan elicitor from Phytophthora megasperma f.sp. glycinea or by osmotic stress (0.4 M glucose). Osmotic stress induced production of a microsomal NADPH-dependent flavone synthase (flavone synthase II) which catalyses conversion of (2S)-naringenin to apigenin. In one of our cell-lines this enzyme activity was not detected either in unchallenged cells or in cells treated with glucan elicitor. Inducibility of flavone synthase II by 0.4 M glucose was highest at the end of the linear growth phase. Changes in the activities of a number of other enzymes were determined after treatment of the cells with elicitor or 0.4 M glucose. The activities of phenylalanine ammonialyase, cinnamate 4-hydroxylase, chalcone synthase and dihydroxypterocarpan 6a-hydroxylase all increased with elicitor and with osmoticum, albeit to a different degree. The rise in enzyme activity occurred later with osmoticum than with elicitor. The prenyltransferase involved in glyceollin synthesis was induced strongly by elicitor but only very weakly by osmoticum, whereas isoflavone synthase and NADPH: cytochrome-c reductase were only induced by elicitor. The activity of glucose-6-phosphate dehydrogenase did not change with elicitor or with osmoticum. Different product patterns were also obtained: whereas with elicitor, glyceollin I was the major product, intermediates of the glyceollin pathway (7,4'-dihydroxyflavanone, trihydroxypterocarpan) accumulated with osmoticum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.