Abstract
A differential inclusion in which the values of the right-hand side are nonconvex closed possibly unbounded sets is considered in a finite-dimensional space. Existence theorems for solutions and a relaxation theorem are proved. Relaxation theorems for a differential inclusion with bounded right-hand side, as a rule, are proved under the Lipschitz condition. In our paper, in the proof of the relaxation theorem for the differential inclusion, we use the notion of ρ - H Lipschitzness instead of the Lipschitzness of a multivalued mapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.