Abstract
BackgroundHIV-1 subtype B is the most prevalent in developed countries and, consequently, it has been extensively studied. On the other hand, subtype C is the most prevalent worldwide and therefore is a reasonable target for future studies. Here we evaluate the acquisition of resistance and the viability of HIV-1 subtype B and C RT clones from different isolates that were subjected to in vitro selection pressure with zidovudine (ZDV) and lamivudine (3TC).Methods/Principal FindingsMT4 cells were infected with chimeric virus pseudotyped with RT from subtype B and C clones, which were previously subjected to serial passage with increasing concentrations of ZDV and 3TC. The samples collected after each passage were analyzed for the presence of resistance mutations and VL. No differences were found between subtypes B and C in viral load and resistance mutations when these viruses were selected with 3TC. However, the route of mutations and the time to rebound of subtype B and C virus were different when subjected to ZDV treatment. In order to confirm the role of the mutations detected, other clones were generated and subjected to in vitro selection. RT subtype B virus isolates tended to acquire different ZDV resistance mutations (Q151M and D67N or T215Y, D67D/N and F214L) compared to subtype C (D67N, K70R, T215I or T215F).Conclusions/SignificanceThis study suggests that different subtypes have a tendency to react differently to antiretroviral drug selection in vitro. Consequently, the acquisition of resistance in patients undergoing antiretroviral therapy can be dependent on the subtypes composing the viral population.
Highlights
Human immunodeficiency virus type 1 (HIV-1) can be segregated into several groups, subtypes, sub-subtypes and circulating recombinant forms (CRF) as a consequence of its genetic diversity [1]
HIV viral load was determined by real time PCR in culture, and correlated to the appearance of nucleoside reverse transcriptase inhibitors (NRTIs) resistance mutations
The selection of resistance mutations during antiretroviral therapy is associated with a reduction in drug susceptibility and viral fitness
Summary
Human immunodeficiency virus type 1 (HIV-1) can be segregated into several groups, subtypes, sub-subtypes and circulating recombinant forms (CRF) as a consequence of its genetic diversity [1]. In regard to HIV antiretroviral (ARV) treatment, several studies have shown that HIV-1 subtype-specific differences influence the in vitro susceptibility as well as the resistance mutations selected upon treatment with specific drugs [7,8,9]. HIV-1 molecular subtype B and C chimeric clones (RTB and RTC) were used to infect MT4 cells during the selection process with a multiplicity of infection (MOI) of 0.001.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.