Abstract
This study examines how sentiment analysis of environmental, social, and governance (ESG) news affects the financial performance of companies in innovative sectors such as mobility, technology, and renewable energy. Using approximately 9828 general ESG articles from Google News and approximately 140,000 company-specific ESG articles, we performed term frequency-inverse document frequency (TF-IDF) analysis to identify key ESG-related terms and visualize their materiality across industries. We then applied models such as bidirectional encoder representations from transformers (BERT), the robustly optimized BERT pretraining approach (RoBERTa), and big bidirectional encoder representations from transformers (BigBird) for multiclass sentiment analysis, and distilled BERT (DistilBERT), a lite BERT (ALBERT), tiny BERT (TinyBERT), and efficiently learning an encoder that classifies token replacements accurately (ELECTRA) for positive and negative sentiment identification. Sentiment analysis results were correlated with profitability, cash flow, and stability indicators over a three-year period (2019–2021). ESG ratings from Morgan Stanley Capital International (MSCI), a prominent provider that evaluates companies’ sustainability practices, further enriched our analysis. The results suggest that sentiment impacts financial performance differently across industries; for example, positive sentiment correlates with financial success in mobility and renewable energy, while consumer goods often show positive sentiment even with low environmental ESG scores. The study highlights the need for industry-specific ESG strategies, especially in dynamic sectors, and suggests future research directions to improve the accuracy of ESG sentiment analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.