Abstract

The immunoregulatory effects of nicotine have not been fully clarified and the reported data are often conflicting. The present study investigated the role of nicotine as an immunomodulator of murine splenocytes stimulated by lipopolysaccharide (LPS), the endotoxin component of gram-negative bacteria. BALB/c female mice of two different ages, young (2–3 months) and old (18–22 months), were used. The cells were incubated with nicotine at two different time points, 3 h pre-incubation and concurrent incubation relevant to LPS stimulation, before further incubation for 48 or 72 h. Treatment of murine splenocytes with nicotine showed an impact on cellular proliferation as well as on the production of the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF- α) and interleukin-6 (IL-6). The results indicated that nicotine significantly inhibited cellular proliferation of murine splenocytes in a concentration-related manner (32, 64 and 128 μg/ml). Timing of nicotine exposure prior to LPS stimulation was critical in terms of immunological impact on cytokine production. TNF- α and IL-6 production were significantly enhanced by 1 μg/ml of nicotine when cells were pre-incubated with nicotine for 3 h compared to concurrent incubation relative to LPS stimulation. The alteration in cytokine production varied with the age of the mouse. TNF- α production was significantly inhibited by nicotine in young mice, while IL-6 production was significantly inhibited by nicotine in old mice. Since any immunomodulation that alters the profile of these cytokines may cause an imbalance in the immune system impinging on health status, these findings may be important when dealing with the concept of nicotine as a therapeutic agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call