Abstract

Infrared irradiation (IR) is the most abundant fraction of sunlight reaching the earth's surface and provides heat. The fever response of an animal is known to regulate its immune responses. However, the non-thermal immune responses of IR were difficult to assess owing to its close association with heat. We hypothesized that IR irradiation induced differential immunological responses, independent of its associated heat. With an IR machine coupled with a delicate temperature control system, we investigated the non-thermal immunological effects of IR in vivo. With heating at 37 °C or 39 °C using an electric blanket or IR irradiation, we measured the skin's physiological parameters, including transepidermal water loss (TEWL), pH, skin hydration, elasticity, sebum production, and skin blood flow. We also measured the number of Langerhans cells in epidermal sheets and draining lymph nodes. Lymph node cells were activated by anti-CD3 antibody and their production of interleukin (IL)-5, 10, 13, 17, and interferon (IFN)-γ was measured by enzyme-linked immunosorbent assay (ELISA). The result showed that compared to heating alone, IR causes an enhanced activation of epidermal Langerhans cells, both in epidermal sheets and in draining lymph nodes. The activation of draining lymph node cells by anti-CD3 antibody in vitro induces both Th2 and Th1, but not Treg immune responses. Interestingly, IL-13, a Th2 cytokine, is induced the most. In contrast, physiological parameters and barrier functions of skin were not altered after IR irradiation. The study showed that IR alone without heat modulates immune responses in vivo, indicating that IR irradiation might regulate host immunity in a heat-independent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.