Abstract

Mycobacterium immunogenum (MI) colonizing metalworking fluids (MWFs) has been associated with chronic hypersensitivity pneumonitis (HP) in machinists. However, it is etiologically unclear why only certain mycobacteria-contaminated fluids induce this interstitial lung disease. We hypothesized that this may be due to differential immunogenicity and the HP-inducing potential of MI strains/genotypes as well as the confounding effect of co-inhaled endotoxin-producers. To test this hypothesis, we optimized a chronic HP mouse model in terms of MI antigen dose, timepoint of sacrifice, and form of antigen (cell lysates vs. live cells) and compared six different field-isolated MI strains. Overall, MJY10 was identified as the most immunogenic and MJY4 (or MJY13) as the least immunogenic genotype based on lung pathoimmunological changes as well as Th1 cellular response (IFN-γ release). Infection with MI live cells induced a more severe phenotype than MI cell lysate. Co-exposure with Pseudomonas fluorescens caused a greater degree of lung innate immune response and granuloma formation but a diminished adaptive (Th1) immune response (IFN-γ) in the lung and spleen. In summary, this study led to the first demonstration of differential immunogenicity and the disease-inducing potential of field strains of MI and an interfering effect of the co-contaminating Pseudomonas. The improved chronic MI-HP mouse model and the identified polar pair of MI strains will facilitate future diagnostic and therapeutic research on this poorly understood environmental lung disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.