Abstract
BackgroundRodents are incapable of emesis and consequently the emetic potential of glucagon-like peptide-1 receptor (GLP-1R) agonists in studies designed to assess a potential blood glucose lowering action of the compound was missed. Therefore, we investigated if the ferret, a carnivore with demonstrated translation capability in emesis research, would identify the emetic potential of the GLP-1R agonist, exendin-4, and any associated effects on gastric motor function, appetite and cardiovascular homeostasis.MethodsThe biological activity of the GLP-1R ligands was investigated in vivo using a glucose tolerance test in pentobarbitone-anesthetised ferrets and in vitro using organ bath studies. Radiotelemetry was used to investigate the effect of exendin-4 on gastric myoelectric activity (GMA) and cardiovascular function in conscious ferrets; behaviour was also simultaneously assessed. Western blot was used to characterize GLP-1R distribution in the gastrointestinal and brain tissues.ResultsIn anesthetised ferrets, exendin-4 (30 nmol/kg, s.c.) reduced experimentally elevated blood glucose levels by 36.3%, whereas the GLP-1R antagonist, exendin (9–39) (300 nmol/kg, s.c.) antagonised the effect and increased AUC0–120 by 31.0% when injected alone (P < 0.05). In animals with radiotelemetry devices, exendin-4 (100 nmol/kg, s.c.) induced emesis in 1/9 ferrets, but inhibited food intake and decreased heart rate variability (HRV) in all animals (P < 0.05). In the animals not exhibiting emesis, there was no effect on GMA, mean arterial blood pressure, heart rate, or core body temperature. In the ferret exhibiting emesis, there was a shift in the GMA towards bradygastria with a decrease in power, and a concomitant decrease in HRV. Western blot revealed GLP-1R throughout the gastrointestinal tract but exendin-4 (up to 300 nM) and exendin (9–39), failed to contract or relax isolated ferret gut tissues. GLP-1R were found in all major brain regions and the levels were comparable those in the vagus nerve.ConclusionsPeripherally administered exendin-4 reduced blood glucose and inhibited feeding with a low emetic potential similar to that in humans (11% vs 12.8%). A disrupted GMA only occurred in the animal exhibiting emesis raising the possibility that disruption of the GMA may influence the probability of emesis occurring in response to treatment with GLP-1R agonists.
Highlights
Rodents are incapable of emesis and the emetic potential of glucagon-like peptide-1 receptor (GLP-1R) agonists in studies designed to assess a potential blood glucose lowering action of the compound was missed
Carbachol (10 μM) was used to induce a contraction of the ileum to investigate if exendin-4 had a potential to induce relaxation of tissues
A final set of experiments examined the effect of exendin-4 on electrical field stimulated (EFS) contractions of the gut
Summary
Rodents are incapable of emesis and the emetic potential of glucagon-like peptide-1 receptor (GLP-1R) agonists in studies designed to assess a potential blood glucose lowering action of the compound was missed. The mechanisms and pathways by which GLP-1 receptors induce emesis are not known and this is partially because most preclinical research on GLP-1 used species incapable of emesis, such as rats and mice [13,14,15] In these species, GLP-1 clearly reduces plasma glucose levels at doses that are known to delay gastric emptying and cause hypertension [16,17]. Studies using the house musk shrew (Suncus murinus), an insectivore capable of emesis, have shown that the GLP-1 agonist, exendin-4 can lower blood glucose levels, elevate plasma insulin, induce emesis, and contract the isolated ileum via a mechanism involving the enteric nervous system [18,19,20]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.