Abstract
The onset of an adaptive immune response provides the signals required for differentiation of antigen-specific lymphocytes into effector cells and imprinting of these cells for re-circulation to the most appropriate anatomical site (i.e., homing). Lymphocyte homing is governed by the expression of tissue-specific lymphocyte homing receptors that bind to unique tissue-specific ligands on endothelial cells. In this study, a whole-parasite malaria vaccine (radiation-attenuated sporozoites (RAS)) was used as a model system to establish homing receptor signatures induced by the parasite delivered through mosquito bite to provide a benchmark of desirable homing receptors for malaria vaccine developers. This immunization regimen resulted in the priming of antigen-specific B cells and CD8+ T cells for homing primarily to the skin and T/B cell compartments of secondary lymphoid organs. Infection with live sporozoites, however, triggers the upregulation of homing receptor for the liver and the skin, demonstrating that there is a difference in the signal provided by attenuated vs. live sporozoites. This is the first report on imprinting of homing routes by Plasmodium sporozoites and, surprisingly, it also points to additional, yet to be identified, signals provided by live parasites that prime lymphocytes for homing to the liver. The data also demonstrate the utility of this method for assessing the potential of vaccine formulations to direct antigen-specific lymphocytes to the most relevant anatomical site, thus potentially impacting vaccine efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.