Abstract

The difficulties in quantifying the 3D form and spatial relationships of the skeletal components of the ribcage present a barrier to studies of the growth of the thoracic skeleton. Thus, most studies to date have relied on traditional measurements such as distances and indices from single or few ribs. It is currently known that adult-like thoracic shape is achieved early, by the end of the second postnatal year, with the circular cross-section of the newborn thorax transforming into the ovoid shape of adults; and that the ribs become inclined such that their anterior borders come to lie inferior to their posterior. Here we present a study that revisits growth changes using geometric morphometrics applied to extensive landmark data taken from the ribcage. We digitized 402 (semi) landmarks on 3D reconstructions to assess growth changes in 27 computed tomography-scanned modern humans representing newborns to adults of both sexes. Our analyses show a curved ontogenetic trajectory, resulting from different ontogenetic growth allometries of upper and lower thoracic units. Adult thoracic morphology is achieved later than predicted, by diverse modifications in different anatomical regions during different ontogenetic stages. Besides a marked increase in antero-posterior dimensions, there is an increase in medio-lateral dimensions of the upper thorax, relative to the lower thorax. This transforms the pyramidal infant thorax into the barrel-shaped one of adults. Rib descent is produced by complex changes in 3D curvature. Developmental differences between upper and lower thoracic regions relate to differential timings and rates of maturation of the respiratory and digestive systems, the spine and the locomotor system. Our findings are relevant to understanding how changes in the relative rates of growth of these systems and structures impacted on the development and evolution of modern human body shape.

Highlights

  • The thoracic skeleton is an osteo-cartilaginous framework that surrounds and protects the thoracic viscera and supports the mechanical function of ventilation

  • All patients were scanned in supine position in maximum inspiration (Austria) except three newborns scanned in France, where two subjects were scanned for trauma in unknown respiratory status and one subject was scanned for virtual autopsy post mortem

  • In the PC1-2 subspace of shape (PC1: 52.34% of total variance, PC2: 13.67% tot. var.) the 95% confidence intervals (CI) includes only half of the individuals of group 2 leaving out six individuals aged older than 2 years

Read more

Summary

Introduction

The thoracic skeleton is an osteo-cartilaginous framework that surrounds and protects the thoracic viscera and supports the mechanical function of ventilation. To fulfill its role in ventilation the thoracic skeleton offers a large surface area for muscle attachment (intercostal muscles, diaphragm, and accessory respiratory muscles) [1,2]. The muscles act to raise the ribs, which increases thoracic dimensions as a consequence of their angulation, form and joints. This leads to reduced intra thoracic pressure and so, to inspiration [1,2]. How morphology changes postnatally is relevant clinically as well as to physiological modelling, and functional and evolutionary morphology [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call