Abstract

Although previous studies have examined the extent to which adrenocorticotropic hormone (ACTH) secretion depends on endogenous glucocorticoid levels, few have examined the parallel glucocorticoid dependency of gene expression within the corticotropin releasing hormone (CRH) neuron containing subregion of the hypothalamic paraventricular nucleus (PVN). This study examined resting and stress-induced expression of three immediate early genes (c-fos, zif268, and NGFI-B mRNAs) and two phenotypic restricted immediate early genes that code for ACTH secretagogues (CRH and arginine vasopressin [AVP] hnRNAs) in the PVN of adrenalectomized (ADX) rats given either 0.9% saline to drink for 5 days or saline with corticosterone (CORT; 25 μg/ml). CORT-containing saline was replaced with saline 18 h before testing to ensure clearance of CORT at the time of testing. Dependent measures were examined 0, 15, 30, 60, or 120 min after 30 min restraint. Compared to sham surgery, ADX produced a large upregulation of basal ACTH secretion but only a trend for an increase in basal PVN CRH and parvocellular (mp) PVN AVP hnRNA expression, and a marked augmentation of restraint-induced ACTH secretion and the expression of all five genes examined. CORT containing saline partially normalized basal and restraint-induced ACTH secretion and restraint-induced AVP hnRNA, c-fos mRNA, and zif268 mRNA in the PVN in ADX rats. In contrast, expression patterns of restraint-induced PVN CRH hnRNA and NGFI-B mRNA were not different between ADX rats with or without CORT replacement. Given that there was no circulating CORT present at the time of restraint challenge in either group of ADX rats, the differential impact of CORT replacement on restraint-induced PVN gene expression must reflect differential dependency of the expression of these genes in the PVN on the prior presence of CORT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call