Abstract

In the current chapter we are recalling the necessary information about differential geometry of surfaces and curves: all metrics and curvature parameters which are necessary to describe properties of the surfaces and curves. We also study differential operations in the corresponding curvilinear coordinate systems in a covariant form, such as Weingarten and Gauss-Codazzi formulas for surfaces and Serret-Frenet formula for 3D curves. This information will be fully used further to build all contact kinematics, weak contact forms as well as linearization of operations. The reader who familiar with differential geometry can however easily skip this chapter containing an overview of the formulas from differential geometry of surfaces and curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.