Abstract
Predicting differential gene expression (DGE) from Histone modifications (HM) signal is crucial to understand how HM controls cell functional heterogeneity through influencing differential gene regulation. Most existing prediction methods use fixed-length bins to represent HM signals and transmit these bins into a single machine learning model to predict differential expression genes of single cell type or cell type pair. However, the inappropriate bin length may cause the splitting of the important HM segment and lead to information loss. Furthermore, the bias of single learning model may limit the prediction accuracy. Considering these problems, in this paper, we proposes an Ensemble deep neural networks framework for predicting Differential Gene Expression (EnDGE). EnDGE employs different feature extractors on input HM signal data with different bin lengths and fuses the feature vectors for DGE prediction. Ensemble multiple learning models with different HM signal cutting strategies helps to keep the integrity and consistency of genetic information in each signal segment, and offset the bias of individual models. Besides the popular feature extractors, we also propose a new Residual Network based model with higher prediction accuracy to increase the diversity of feature extractors. Experiments on the real datasets from the Roadmap Epigenome Project (REMC) show that for all cell type pairs, EnDGE significantly outperforms the state-of-the-art baselines for differential gene expression prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.