Abstract
BackgroundMore than 46 species of mammals can be naturally infected with Schistosoma japonicum in the mainland of China. Mice are permissive and may act as the definitive host of the life cycle. In contrast, rats are less susceptible to S. japonicum infection, and are considered to provide an unsuitable micro-environment for parasite growth and development. Since little is known of what effects this micro-environment has on the parasite itself, we have in the present study utilised a S. japonicum oligonucleotide microarray to compare the gene expression differences of 10-day-old schistosomula maintained in Wistar rats with those maintained in BALB/c mice.ResultsIn total 3,468 schistosome genes were found to be differentially expressed, of which the majority (3,335) were down-regulated (≤ 2 fold) and 133 were up-regulated (≥ 2 fold) in schistosomula from Wistar rats compared with those from BALB/c mice. Gene ontology (GO) analysis revealed that of the differentially expressed genes with already established functions or close homology to well characterized genes in another organisms, many are related to important biological functions or molecular processes. Among the genes that were down-regulated in schistosomula from Wistar rats, some were associated with metabolism, signal transduction and development. Of these genes related to metabolic processes, areas including translation, protein and amino acid phosphorylation, proteolysis, oxidoreductase activities, catalytic activities and hydrolase activities, were represented. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differential expressed genes indicated that of the 328 genes that had a specific KEGG pathway annotation, 324 were down-regulated and were mainly associated with metabolism, growth, redox pathway, oxidative phosphorylation, the cell cycle, ubiquitin-mediated proteolysis, protein export and the MAPK (mitogen-activated protein kinases) signaling pathway.ConclusionsThis work presents the first large scale gene expression study identifying the differences between schistosomula maintained in mice and those maintained in rats, and specifically highlights differential expression that may impact on the survival and development of the parasite within the definitive host. The research presented here provides valuable information for the better understanding of schistosome development and host-parasite interactions.
Highlights
More than 46 species of mammals can be naturally infected with Schistosoma japonicum in the mainland of China
We have used microarray analysis to explore gene expression differences between schistosomula maintained in Wistar rats and those maintained in BALB/c mice, to enable the identification of parasite molecular mechanisms associated with the growth retardation of schistosomula in Wistar rats
Comparison of the survival rate of 10-day-old schistosomula maintained in BALB/c mice was ~ 70%, which was much higher than the rate of survival for the same age schistosomula maintained in Wistar rats at ~ 24%
Summary
More than 46 species of mammals can be naturally infected with Schistosoma japonicum in the mainland of China. Rats are less susceptible to S. japonicum infection, and are considered to provide an unsuitable micro-environment for parasite growth and development. Since little is known of what effects this micro-environment has on the parasite itself, we have in the present study utilised a S. japonicum oligonucleotide microarray to compare the gene expression differences of 10-day-old schistosomula maintained in Wistar rats with those maintained in BALB/c mice. More than 46 species of mammals have been reported to be naturally infected with Schistosoma japonicum (Chinese mainland strain) in China [1]. We have used microarray analysis to explore gene expression differences between schistosomula maintained in Wistar rats and those maintained in BALB/c mice, to enable the identification of parasite molecular mechanisms associated with the growth retardation of schistosomula in Wistar rats
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.