Abstract

BackgroundCanine behavioural problems, in particular aggression, are important reasons for euthanasia of otherwise healthy dogs. Aggressive behaviour in dogs also represents an animal welfare problem and a public threat. Elucidating the genetic background of adverse behaviour can provide valuable information to breeding programs and aid the development of drugs aimed at treating undesirable behaviour. With the intentions of identifying gene-specific expression in particular brain parts and comparing brains of aggressive and non-aggressive dogs, we studied amygdala, frontal cortex, hypothalamus and parietal cortex, as these tissues are reported to be involved in emotional reactions, including aggression. Based on quantitative real-time PCR (qRT-PCR) in 20 brains, obtained from 11 dogs euthanised because of aggressive behaviour and nine non-aggressive dogs, we studied expression of nine genes identified in an initial screening by subtraction hybridisation.ResultsThis study describes differential expression of the UBE2V2 and ZNF227 genes in brains of aggressive and non-aggressive dogs. It also reports differential expression for eight of the studied genes across four different brain tissues (amygdala, frontal cortex, hypothalamus, and parietal cortex). Sex differences in transcription levels were detected for five of the nine studied genes.ConclusionsThe study showed significant differences in gene expression between brain compartments for most of the investigated genes. Increased expression of two genes was associated with the aggression phenotype. Although the UBE2V2 and ZNF227 genes have no known function in regulation of aggressive behaviour, this study contributes to preliminary data of differential gene expression in the canine brain and provides new information to be further explored.

Highlights

  • IntroductionIn particular aggression, are important reasons for euthanasia of otherwise healthy dogs

  • Canine behavioural problems, in particular aggression, are important reasons for euthanasia of otherwise healthy dogs

  • Initial screening with cDNA subtraction assays In the initial screening, the first of two parallel cDNA subtraction protocols identified 40 genes (Additional file 1) that were up-regulated in aggressive amygdala compared to non-aggressive amygdala

Read more

Summary

Introduction

In particular aggression, are important reasons for euthanasia of otherwise healthy dogs. With the intentions of identifying gene-specific expression in particular brain parts and comparing brains of aggressive and non-aggressive dogs, we studied amygdala, frontal cortex, hypothalamus and parietal cortex, as these tissues are reported to be involved in emotional reactions, including aggression. Favourable behaviour is important for well-being and negative traits such as aggression may ruin the owner-dog relationship and lead to relinquishment to shelters or even euthanasia of otherwise healthy dogs [2,3]. Behavioural traits result from an interaction of both genetic and environmental factors. Rodents have provided the most important models for studies of genes involved in human mental illness. Canine patients from breeds with an increased risk of aggression, anxiety, and stereotypic behaviours provide important resources for genetic research

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.